
Rusticl:
Compute for the Linux desktop?

Karol Herbst, Mesa, Red Hat



Who am I?

• Mesa contributor since 2016
• Works on Nouveau and OpenCL
• Part of Red Hat’s GPU team since 2018
• Added support for system SVM to mesa’s old CL driver
• Started rusticl in 2021
• Participates in the OpenCL WG

• Turns into a spec lawyer



Who am I?

• Mesa contributor since 2016
• Works on Nouveau and OpenCL
• Part of Red Hat’s GPU team since 2018
• Added support for system SVM to mesa’s old CL driver
• Started rusticl in 2021
• Participates in the OpenCL WG
• Turns into a spec lawyer



The situation



The Linux desktop

• Compute hasn’t seen much adaption
• Lack of good runtimes/APIs?
• A lot of packaging work?
• What alternatives exist?



Applications

• CLBlast
• Darktable
• Davinci Resolve
• GIMP
• Libreoffice Calc
• OpenCV
• Couple of smaller ones

• There aren’t that many actually



Applications

• CLBlast
• Darktable
• Davinci Resolve
• GIMP
• Libreoffice Calc
• OpenCV
• Couple of smaller ones
• There aren’t that many actually



What lead do this?

• Bad reputation of clover, AMD only
• Fragmented Eco system
• People think OpenCL is dead
• No out-of-the-box availability



Alternatives



Requirements

• It needs to run everywhere
• People still use GPUs from 15 years ago on modern desktops!

• Got a recent report of Firefox crashing on GeForce 6000 GPUs :’)
• Users just want to use it
• App developers don’t want to become compute experts
• Want to use their favorite programming language



OpenGL

• Doesn’t see new features or concepts
• However it’s easier to use than Vulkan
• Limited compute capabilities
• GLSL
• SPIR-V support probably broken



Vulkan

• It has a lot of momentum

• Vulkan evolves into a low-level API for drivers
• Hard to target for simple offloading
• We need something higher level
• Rusticl can run on top of Vulkan



Vulkan

• It has a lot of momentum
• Vulkan evolves into a low-level API for drivers
• Hard to target for simple offloading
• We need something higher level

• Rusticl can run on top of Vulkan



Vulkan

• It has a lot of momentum
• Vulkan evolves into a low-level API for drivers
• Hard to target for simple offloading
• We need something higher level
• Rusticl can run on top of Vulkan



SyCL

• Has quite the momentum
• Actively developed

• It’s not a runtime API
⇒ Runtime lock-in at compile time
• AdaptiveCPP might make SyCL more interesting?



SyCL

• Has quite the momentum
• Actively developed
• It’s not a runtime API

⇒ Runtime lock-in at compile time
• AdaptiveCPP might make SyCL more interesting?



X

• Alternatives generally vendor or language locked-in
• Desktop features don’t want to rely on it to function

• What if an accessibility feature relies on e.g. CUDA?
• What if you have to be a C++ developer to use it?



OpenCL

• Quite simple to use
• Inherited some of the time’s mindset
• Everything is abstracted
• Experiences a revival
• SPIR-V support
• So OpenCL it is

(for now)



OpenCL

• Quite simple to use
• Inherited some of the time’s mindset
• Everything is abstracted
• Experiences a revival
• SPIR-V support
• So OpenCL it is (for now)



But does it work OOTB?

• No

• Unless your distribution packages OpenCL runtimes
• Rusticl could fix this!



But does it work OOTB?

• No
• Unless your distribution packages OpenCL runtimes
• Rusticl could fix this!



The solution?



Rusticl

• Rust based OpenCL 3.0 implementation in Mesa using Gallium
• Multi-threaded
• Mesa: FOSS cross-vendor GPU driver
• Gallium: driver abstraction

• ... and my first Rust project



Rusticl

• Rust based OpenCL 3.0 implementation in Mesa using Gallium
• Multi-threaded
• Mesa: FOSS cross-vendor GPU driver
• Gallium: driver abstraction
• ... and my first Rust project



Why Rust?

• I wanted to learn about rust
• Is it feasible inside mesa?
• Is it feasible for an OpenCL impl?

• Removes entire classes of bugs
• Easy to write thread-safe code

• Arc, Mutex and closures help a lot!



Why Rust?

• I wanted to learn about rust
• Is it feasible inside mesa?
• Is it feasible for an OpenCL impl?

• Removes entire classes of bugs
• Easy to write thread-safe code

• Arc, Mutex and closures help a lot!



Gallium

Frontends

Drivers

RusticlOpenGLNine

gallium

VAAPIVDPAU

AsahiIrisNouveauRadeonsiV3dEtnavivZink



Rusticl compiler stack

• Uses the LLVM-SPIRV-Translator for OpenCL C
• Optimized for SPIR-V input

• causes issues, because everybody else uses LLVM
• NIR as mesa internal IR

• optimization and lowering passes
• gets translated to Vk SPIR-V for Zink



But does it work OOTB?

• No

• Unless you opt-in



But does it work OOTB?

• No
• Unless you opt-in



The Journey so far



Making Mesa compute ready

• Mesa’s compiler is not LLVM based
• Adding a structurizer (also used for NVK)
• Supporting pointers
• Supporting function calls (ongoing)

• Advanced compute features
• SVM (also ongoing)



Use inside Mesa

• Shader lowering
• Ray tracing
• GS/TCS/TES for GPUs not supporting it
• Internal shaders for Intel

• Shared code between host and GPU
• Memcpy



What about supporting other APIs?

• Implementing optional features for:
• SyCL: DPCPP or AdaptiveCPP
• CUDA/HIP: chipStar

• Level Zero: no concrete plans



So where are we going with this?



Things OpenCL might want to improve

• Performance pitfalls
• HOST_PTR
• API validation can be expensive
• Almost no feedback on optimal usage
• Multi device support feels too implicit

• SVM/USM/BDA
• Add explicit client VM management? Or sparse?



Ecosystem

• Early SPIR-V validation in
• SPIRV-LLVM-Translator
• DPCPP
• LLVM SPIR-V backend

• Easier packaging
• Better debugging tools

• need more tools like the opencl-intercept-layer



Where I want to see more Compute

• Video encoding/decoding?
• AV1 is cool and all, but what about old hardware?

• Accessibility?
• Disclaimer: I’m not an accessibility expert

• Speech-to-text
• Automatic picture descriptions
• Summaries of long texts

• More High level APIs
• Apple does this and are very successful with this?



Where I want to see more Compute

• Video encoding/decoding?
• AV1 is cool and all, but what about old hardware?

• Accessibility?
• Disclaimer: I’m not an accessibility expert
• Speech-to-text
• Automatic picture descriptions
• Summaries of long texts

• More High level APIs
• Apple does this and are very successful with this?



Where I want to see more Compute

• Video encoding/decoding?
• AV1 is cool and all, but what about old hardware?

• Accessibility?
• Disclaimer: I’m not an accessibility expert
• Speech-to-text
• Automatic picture descriptions
• Summaries of long texts

• More High level APIs
• Apple does this and are very successful with this?



SPIR-V

• More focus on SPIR-V
• OpenCL C should not be the only way to write kernels!
• Make others use it (e.g. HIP or openpm)
• SPIR-V should become the de-facto compute IR



Other Considerations

• Laptops often have slow GPUs
• requiring beefy GPUs for AI/ML is not great

• Unified memory often slow! (Apple solved this)



Questions?


	Who am I?
	Situation
	The Linux desktop
	Applications
	What lead do this?
	Alternatives
	Requirements
	OpenGL
	Vulkan
	SyCL
	X
	OpenCL
	But does it work OOTB?
	Solution
	Rusticl
	Why Rust?
	Gallium
	Rusticl compiler stack
	But does it work OOTB?
	Journey
	Making Mesa compute ready
	Use inside Mesa
	What about supporting other APIs?
	Future
	Things OpenCL might want to improve
	Ecosystem
	Where I want to see more Compute
	SPIR-V
	Other Considerations
	Questions

