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The situation



The Linux desktop

• Compute hasn’t seen much adaption
• Lack of good runtimes/APIs?
• A lot of packaging work?
• What alternatives exist?



Applications

• CLBlast
• Darktable
• Davinci Resolve
• GIMP
• Libreoffice Calc
• OpenCV
• Couple of smaller ones
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What lead do this?

• Bad reputation of clover, AMD only
• Fragmented Eco system
• People think OpenCL is dead
• No out-of-the-box availability



Alternatives



Requirements

• It needs to run everywhere
• People still use GPUs from 15 years ago on modern desktops!

• Got a recent report of Firefox crashing on GeForce 6000 GPUs :’)
• Users just want to use it
• App developers don’t want to become compute experts
• Want to use their favorite programming language



OpenGL

• Doesn’t see new features or concepts
• However it’s easier to use than Vulkan
• Limited compute capabilities
• GLSL
• SPIR-V support probably broken



Vulkan

• It has a lot of momentum

• Vulkan evolves into a low-level API for drivers
• Hard to target for simple offloading
• We need something higher level
• Rusticl can run on top of Vulkan
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X

• Alternatives generally vendor or language locked-in
• Desktop features don’t want to rely on it to function

• What if an accessibility feature relies on e.g. CUDA?
• What if you have to be a C++ developer to use it?



OpenCL

• Quite simple to use
• Inherited some of the time’s mindset
• Everything is abstracted
• Experiences a revival
• SPIR-V support
• So OpenCL it is

(for now)
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But does it work OOTB?

• No

• Unless your distribution packages OpenCL runtimes
• Rusticl could fix this!
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The solution?



Rusticl

• Rust based OpenCL 3.0 implementation in Mesa using Gallium
• Multi-threaded
• Mesa: FOSS cross-vendor GPU driver
• Gallium: driver abstraction

• ... and my first Rust project
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Why Rust?

• I wanted to learn about rust
• Is it feasible inside mesa?
• Is it feasible for an OpenCL impl?

• Removes entire classes of bugs
• Easy to write thread-safe code

• Arc, Mutex and closures help a lot!
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Gallium

Frontends
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Rusticl compiler stack

• Uses the LLVM-SPIRV-Translator for OpenCL C
• Optimized for SPIR-V input

• causes issues, because everybody else uses LLVM
• NIR as mesa internal IR

• optimization and lowering passes
• gets translated to Vk SPIR-V for Zink



But does it work OOTB?

• No

• Unless you opt-in
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The Journey so far



Making Mesa compute ready

• Mesa’s compiler is not LLVM based
• Adding a structurizer (also used for NVK)
• Supporting pointers
• Supporting function calls (ongoing)

• Advanced compute features
• SVM (also ongoing)



Use inside Mesa

• Shader lowering
• Ray tracing
• GS/TCS/TES for GPUs not supporting it
• Internal shaders for Intel

• Shared code between host and GPU
• Memcpy



What about supporting other APIs?

• Implementing optional features for:
• SyCL: DPCPP or AdaptiveCPP
• CUDA/HIP: chipStar

• Level Zero: no concrete plans



So where are we going with this?



Things OpenCL might want to improve

• Performance pitfalls
• HOST_PTR
• API validation can be expensive
• Almost no feedback on optimal usage
• Multi device support feels too implicit

• SVM/USM/BDA
• Add explicit client VM management? Or sparse?



Ecosystem

• Early SPIR-V validation in
• SPIRV-LLVM-Translator
• DPCPP
• LLVM SPIR-V backend

• Easier packaging
• Better debugging tools

• need more tools like the opencl-intercept-layer



Where I want to see more Compute

• Video encoding/decoding?
• AV1 is cool and all, but what about old hardware?

• Accessibility?
• Disclaimer: I’m not an accessibility expert

• Speech-to-text
• Automatic picture descriptions
• Summaries of long texts

• More High level APIs
• Apple does this and are very successful with this?
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SPIR-V

• More focus on SPIR-V
• OpenCL C should not be the only way to write kernels!
• Make others use it (e.g. HIP or openpm)
• SPIR-V should become the de-facto compute IR



Other Considerations

• Laptops often have slow GPUs
• requiring beefy GPUs for AI/ML is not great

• Unified memory often slow! (Apple solved this)



Questions?
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