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Motivation

Our BUDE molecular docking code turned
out to show strong performance portability:
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Lattice Boltzmann (LBM)

* A versatile approach for solving
incompressible flows based on a simplified
gas-kinetic description of the Boltzmann

equation (used for CFD et al)
A structured grid algorithm
» Usually memory bandwidth limited
* Ports well to most parallel architectures

* We targeted the most widely used variant,
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« D3Q19-BGK LBM

* To update a cell, need to access 19 of the
27 surrounding cell values in the 3D grid
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Target platforms

Platform Clock |[RAM |Memory B/W| S.P. D.pP. |TDP
(GHz)|(GB) (GB/s) |TFLOP/s|TFLOP/s| (W)
AMD FirePro S10000 0.825| 6 480 5.91 1.48 375
AMD Radeon HD 7970 0.925| 3 264 3.78 0.95 230
AMD Radeon R9 290X 1.000| 4 320 5.63 0.70 250
Intel Xeon E5-2687W (x2)| 3.100 | 32 102 0.79 0.40 300
Intel Xeon Phi SE10P 1.100 | 8 320 2.15 1.07 300
NVIDIA GTX 780 Ti 0.928| 3 336 5.05 0.21 250
NVIDIA GTX 680 1.006 | 2 192 3.00 0.13 195
NVIDIA Tesla K20 0.706 | 6 208 3.52 1.17 225
NVIDIA Tesla M2090 0.650 | 6 177 1.33 0.66 225
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Methodology

« Code was extremely efficient but not over complicated

* "ldentical" versions in OpenCL and CUDA
 Single precision grid 1283 (~2m grid points, 304 MBytes)
* The OpenCL three dimensional work-group size was fixed
at (128,1,1) for all OpenCL runs on all devices.

- The CUDA thread grouping was arranged in exactly the
same way as the OpenCL execution, with a blocksize of
(128,1,1).

* The OpenMP code was as close as possible to the
OpenCL/CUDA versions

Made sure the OpenMP code was being vectorised
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Performance results for 128°
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Performance results for 128°
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So perf. portable, but is it fast?

« On an Nvidia K20, our best 1283 single
precision performance in OpenCL was 1,110
MLUPS

* |n the literature, the fastest quoted results are
~1,000 MLUPS (Januszewski and Kostur's

Salilfish program) and 982 MLUPS (Mawson
and Revell)

* Our results are a 13% improvement over
Mawson-Revell and a 10% improvement over
Januszewski-Kostur
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« Other grid sizes
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Impact of work- group sizes
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Performance portability isn't what we expect
.. Isit?

Why not?
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Why don't we expect pertf. portability”?

 Historical reasons
» Started with immature drivers
» Started with immature architectures
 Started with immature applications

- But things have changed
* Drivers now mature / maturing
 Architectures now mature / maturing

« Applications now mature / maturing
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Performance portability techniques

* Aim for 80-90% of optimal

* Then easier to get this on many platforms

« Aiming for ~100% on a specific platform often
results in slower code on other platforms

* Avoid platform-specific optimisations

* Most optimisations make the code faster

on most platforms
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Conclusions

» 2D structured grid codes such as lattice
Boltzmann can benefit from significant
performance improvements on many-core
accelerators such as GPUs and Xeon Phi

* OpenCL can straightforwardly enable a
much better degree of performance
portability than most people expect
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