Evaluation of a
performance
portable lattice
Boltzmann code
using OpenCL

Simon Mcintosh-Smith

Dan Curran
Computer Science
University of Bristol

-% University of _ _
AL BRISTQL Twitter: @simonmcs 1

Motivation

Our BUDE molecular docking code turned
out to show strong performance portability:

46% 50%

44
N 42% 42% % 45%

- 40%

\@/ 35%

30%

Aduanpy3

2.50
2.5
£ 213
1.92
O 20 9
-
- 1.43 1.60
1.5 :
T
e
L 1.0
= 0.68
©
= 0.5 - r
(7]
0.0 I T T T T T
NVIDIAGTX NVIDIAGTX NVIDIATesla AMD Radeon AMD Radeon AMD FirePro Intel Xeon Phi Intel
680 780 Ti K20c HD7970 R9 290X S$10000 SE10P E5-2687W (x2)

University of "High Performance in silico Virtual Drug Screening on Many-Core Processors",
el BRISTOL. S. Mcintosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014

Lattice Boltzmann (LBM)

* A versatile approach for solving
incompressible flows based on a simplified
gas-kinetic description of the Boltzmann

equation (used for CFD et al)
A structured grid algorithm
» Usually memory bandwidth limited
* Ports well to most parallel architectures

* We targeted the most widely used variant,

D3Q19-BGK

-Vé University of
BEI BRISTOL

« D3Q19-BGK LBM

* To update a cell, need to access 19 of the
27 surrounding cell values in the 3D grid

% University of
Y BRISTOL

Target platforms

Platform Clock |[RAM |Memory B/W| S.P. D.pP. |TDP
(GHz)|(GB) (GB/s) |TFLOP/s|TFLOP/s| (W)
AMD FirePro S10000 0.825| 6 480 5.91 1.48 375
AMD Radeon HD 7970 0.925| 3 264 3.78 0.95 230
AMD Radeon R9 290X 1.000| 4 320 5.63 0.70 250
Intel Xeon E5-2687W (x2)| 3.100 | 32 102 0.79 0.40 300
Intel Xeon Phi SE10P 1.100 | 8 320 2.15 1.07 300
NVIDIA GTX 780 Ti 0.928| 3 336 5.05 0.21 250
NVIDIA GTX 680 1.006 | 2 192 3.00 0.13 195
NVIDIA Tesla K20 0.706 | 6 208 3.52 1.17 225
NVIDIA Tesla M2090 0.650 | 6 177 1.33 0.66 225
University of
&l BRISTOL 5

Methodology

« Code was extremely efficient but not over complicated

* "ldentical" versions in OpenCL and CUDA
 Single precision grid 1283 (~2m grid points, 304 MBytes)
* The OpenCL three dimensional work-group size was fixed
at (128,1,1) for all OpenCL runs on all devices.

- The CUDA thread grouping was arranged in exactly the
same way as the OpenCL execution, with a blocksize of
(128,1,1).

* The OpenMP code was as close as possible to the
OpenCL/CUDA versions

Made sure the OpenMP code was being vectorised

Elic University of
BRISTOL

Performance results for 128°

2,200 2,053 B OpenCL
— 2,000 1734 M CUDA
¢ 1,800
£ B OpenMP
2 1,600 1,445
21,400 1,232 1,236
£ 1,200
o0
= 1,000
o 800
= 600
200
0
F P O)
R R S o;f’ < j’
&R QQQQ QQ@ ¥R &
(®)
S ,\g,°° ¥
ke University of Single precision results

BRISTOL

Performance results for 128°

90%
80% T
70% -,
60% -
50%
40%
30% -
20%
10% -
0%

Sustained fraction of
peak memory bandwidth

B University of OpenCL single precision results
BRISTOL P Jep

So perf. portable, but is it fast?

« On an Nvidia K20, our best 1283 single
precision performance in OpenCL was 1,110
MLUPS

* |n the literature, the fastest quoted results are
~1,000 MLUPS (Januszewski and Kostur's

Salilfish program) and 982 MLUPS (Mawson
and Revell)

* Our results are a 13% improvement over
Mawson-Revell and a 10% improvement over
Januszewski-Kostur

Elic University of
BRISTOL

« Other grid sizes

2,500
2,000
s=0==20C
'g, =ill=\12090
B 1,500 = GTX 780 Ti
wv
g == GTX 680
£ =H=HD 7970
<
© 1,000 - ====510000 1 GPU
=
g “===510000 2 GPU
e RY 290X
500 - Xeon Phi SE10P
== Xeon E5-2687
0 —
16 32 48 64 80 96 112 128 144 160 176 192 208 224 240 256
D3Q19-BGK 3D sizes
Vé University of OpenCL single precision results

g BRISTOL

10

Impact of work- group sizes

1.0 1.0
| 0.8

0.8 ’
w

g 07 —
©

£ |

£ 06 ,\/V]

<

Q

'E 0.5 /J I_F

Normaliz

-/
o
4

0.0 - , T . ; . . :

AMD GPUs

Vé University of
D BRISTOL

. .

‘ j! —K20c
— 0.7 r/ F’.N
M2090
£ 0.6 A
£ / j" ——GTX 780 Ti
—R9 290X e 05 ’j /’ —GTX 680
= 04
S10000 E /f,
5 03
=1/
——HD 7970 0.2 I
0.1 ,
\\\\\\ 0.0 T T T T T T T T T T T T T T T 1
80 96 112 128 0 16 32 48 64 80 96 112 128
Work-group

OpenCL single precision results

NVIDIA GPUs

A AAA/\N\/\ MmMAﬂw’\AMM /\A,N
I“J NAL

"v VK

——Xeon E5-2687

Intel CPU

11

Performance portability isn't what we expect
.. Isit?

Why not?

Elic University of
BRISTOL

12

Why don't we expect pertf. portability”?

 Historical reasons
» Started with immature drivers
» Started with immature architectures
 Started with immature applications

- But things have changed
* Drivers now mature / maturing
 Architectures now mature / maturing

« Applications now mature / maturing

Elic University of
BRISTOL 13

Performance portability techniques

* Aim for 80-90% of optimal

* Then easier to get this on many platforms

« Aiming for ~100% on a specific platform often
results in slower code on other platforms

* Avoid platform-specific optimisations

* Most optimisations make the code faster

on most platforms

-Vé University of
BEI BRISTOL 14

Conclusions

» 2D structured grid codes such as lattice
Boltzmann can benefit from significant
performance improvements on many-core
accelerators such as GPUs and Xeon Phi

* OpenCL can straightforwardly enable a
much better degree of performance
portability than most people expect

Elic University of
I BRISTOL

15

Related Publications

« "High Performance in silico Virtual Drug Screening on Many-
Core Processors", S. Mclntosh-Smith, J. Price, R.B. Sessions,
A.A. Ibarra, IIHPCA 2014. doi: 10.1177/1094342014528252

« "On the performance portability of structured grid codes on
many-core computer architectures”, S.N. Mclntosh-Smith, M.
Boulton, D. Curran and J.R. Price. To appear, International
Supercomputing, Leipzig, June 2014.

« "Accelerating hydrocodes with OpenACC, OpenCL and
CUDA", Herdman, J., Gaudin, W., Mcintosh-Smith, S.,
Boulton, M., Beckingsale, D., Mallinson, A., Jarvis, S. In: High
Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:. (Nov 2012) 465-471.

Elic University of
BRISTOL 16

y of

—
O
~
%
~
=

Vé Universit
&[4

