
Evaluation of a
performance
portable lattice
Boltzmann code
using OpenCL
Simon McIntosh-Smith
Dan Curran
Computer Science
University of Bristol

1 Twitter: @simonmcs

!  Motivation
Our BUDE molecular docking code turned
out to show strong performance portability:

2
"High Performance in silico Virtual Drug Screening on Many-Core Processors",
S. McIntosh-Smith, J. Price, R.B. Sessions, A.A. Ibarra, IJHPCA 2014

!  Lattice Boltzmann (LBM)

•  A versatile approach for solving
incompressible flows based on a simplified
gas-kinetic description of the Boltzmann
equation (used for CFD et al)

•  A structured grid algorithm
•  Usually memory bandwidth limited
•  Ports well to most parallel architectures
•  We targeted the most widely used variant,

D3Q19-BGK
3

!  D3Q19-BGK LBM

•  To update a cell, need to access 19 of the
27 surrounding cell values in the 3D grid

4

!  Target platforms

5

!  Methodology
•  Code was extremely efficient but not over complicated
•  "Identical" versions in OpenCL and CUDA

•  Single precision grid 1283 (∼2m grid points, 304 MBytes)
•  The OpenCL three dimensional work-group size was fixed

at (128,1,1) for all OpenCL runs on all devices.
•  The CUDA thread grouping was arranged in exactly the

same way as the OpenCL execution, with a blocksize of
(128,1,1).

•  The OpenMP code was as close as possible to the
OpenCL/CUDA versions

•  Made sure the OpenMP code was being vectorised

6

!  Performance results for 1283

7 Single precision results

!  Performance results for 1283

8 OpenCL single precision results

57%
67%

!  So perf. portable, but is it fast?

•  On an Nvidia K20, our best 1283 single
precision performance in OpenCL was 1,110
MLUPS

•  In the literature, the fastest quoted results are
~1,000 MLUPS (Januszewski and Kostur's
Sailfish program) and 982 MLUPS (Mawson
and Revell)

•  Our results are a 13% improvement over
Mawson-Revell and a 10% improvement over
Januszewski-Kostur

9

!  Other grid sizes

10 OpenCL single precision results

!  Impact of work-group sizes

11 OpenCL single precision results

AMD GPUs NVIDIA GPUs

Intel CPU

12

Performance portability isn't what we expect

… is it?

Why not?

!  Why don't we expect perf. portability?

•  Historical reasons
•  Started with immature drivers
•  Started with immature architectures
•  Started with immature applications

•  But things have changed
•  Drivers now mature / maturing
•  Architectures now mature / maturing
•  Applications now mature / maturing

13

!  Performance portability techniques

•  Aim for 80-90% of optimal
•  Then easier to get this on many platforms
•  Aiming for ~100% on a specific platform often

results in slower code on other platforms

•  Avoid platform-specific optimisations

•  Most optimisations make the code faster
on most platforms

14

!  Conclusions

•  2D structured grid codes such as lattice
Boltzmann can benefit from significant
performance improvements on many-core
accelerators such as GPUs and Xeon Phi

•  OpenCL can straightforwardly enable a
much better degree of performance
portability than most people expect

15

!  Related Publications
•  "High Performance in silico Virtual Drug Screening on Many-

Core Processors", S. McIntosh-Smith, J. Price, R.B. Sessions,
A.A. Ibarra, IJHPCA 2014. doi: 10.1177/1094342014528252

•  "On the performance portability of structured grid codes on
many-core computer architectures", S.N. McIntosh-Smith, M.
Boulton, D. Curran and J.R. Price. To appear, International
Supercomputing, Leipzig, June 2014.

•  "Accelerating hydrocodes with OpenACC, OpenCL and
CUDA", Herdman, J., Gaudin, W., McIntosh-Smith, S.,
Boulton, M., Beckingsale, D., Mallinson, A., Jarvis, S. In: High
Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:. (Nov 2012) 465–471.

16

17

