
Figure 4: Example error message for a data-race

Read-write data race at global memory address 1000000000004
 Work-item: Global(2,0,0) Local(0,0,0)
 Work-group: (2,0,0)
 Kernel: global_read_write_race
 %tmp6 = load i32 addrspace(1)* %arrayidx, align 4
 At line 6 of input.cl

 Race occured with work-item (1,0,0)
 store i32 %tmp6, i32 addrspace(1)* %arrayidx3, align 4
 At line 7 of input.cl

Invalid read of size 4 at global memory address 1000000000040
 Work-item: Global(16,0,0) Local(0,0,0)
 Work-group: (16,0,0)
 Kernel: vecadd
 %tmp8 = load float addrspace(1)* %tmp7, align 4, !dbg !47
 At line 16 of input.cl

example.cl # File containing OpenCL program
example # Name of kernel to run
1024 1 1 # NDRange
16 1 1 # Work-group size

First argument - 4K buffer initialized with range
<size=4096 range=0:1:4095>

Second argument - 4K buffer initialized with zeros
<size=4096 fill=0>

Third argument - single value interpreted as a float
<size=4 float>
42.874

James Price and Simon McIntosh-Smith

Introduction

Department of Computer Science, University of Bristol

Development Tools

Implementation

Future Work

Single Kernel Interface

Oclgrind

SYCL

C++ AMP

Halide

...

OpenCL
Application
with SPIR
kernels

OpenCL C
Kernel

SPIR
Kernel

Standalone Kernels{

This work was partly funded by Imagination Technologies. We
would also like to thank Codeplay for providing useful feedback
about Oclgrind.

Oclgrind: An Open Source SPIR Interpreter
and OpenCL Device Simulator

Oclgrind is an open source OpenCL device simulator, built
around an interpreter for SPIR (Standard Portable Intermediate
Representation). The project aims to provide a platform with
which a variety of useful tools can be created to aid OpenCL
application development and research efforts. Oclgrind is
available via GitHub and is offered under a BSD license.

The execution of kernels is simulated on an abstract OpenCL
device. This device exhibits the high-level characteristics of the
OpenCL execution and memory models, but does not model any
architecture specific features such as SIMD execution or cache
hierarchies. The simulation understands the concepts of work-
items, work-groups and the different memory address spaces and
synchronisation constructs available in OpenCL, and therefore
kernel execution is semantically correct with respect to the
OpenCL standard.

Future work on Oclgrind will involve adding new debugging aids
such as detecting use of uninitialised variables and additional
features in the interactive debugger. We will also explore the use
of Oclgrind for profiling and performance analysis of OpenCL
applications, such as divergent branch analysis and profiling
memory accesses. When SPIR is updated to support OpenCL 2.0
language features, we will also update Oclgrind to support
OpenCL 2.0 applications. As Oclgrind is an open source project,
contributions from other members of the OpenCL community are
always welcome, along with bug reports and feature suggestions.

There are two mechanisms for simulating kernel execution with
Oclgrind. A kernel can be executed in isolation, by describing the
NDRange information and kernel argument data in a simple
configuration file (shown in figure 2). Oclgrind also provides an
implementation of the OpenCL 1.2 runtime API, which allows
existing OpenCL applications to target the simulator without
requiring any modifications. OpenCL programs can be presented
to Oclgrind in either OpenCL C or SPIR form, allowing the
simulator to be targeted from applications that use high-level
programming models such as SYCL, C++ AMP or Halide.

A number of development tools have already been implemented
within Oclgrind. In particular, the following utilities are currently
available:

 • Detecting memory access errors
 • Detecting work-group divergence
 • Detecting data-races
 • Interactive kernel debugging
 • Collecting histograms of instructions executed

Since the simulation being performed understands the OpenCL
execution model, the error messages that Oclgrind produces when
it encounters a problem with a kernel are OpenCL-aware, and
contain all the information needed to pin-point the problem.
Figures 3 and 4 show examples of the information provided when
Oclgrind detects an error while executing a kernel.

Figure 2: An example configuration file for running kernels in isolation

Figure 1: High-level description of different Oclgrind workflows

Figure 3: Example error message for an invalid memory access

The interactive debugger provides a simple, GDB-style interface to
step through kernel execution. This can make it easier to diagnose
the cause of any problems that Oclgrind detects, or to debug
functional issues with a kernel. As well as stepping through kernel
source code, the debugger allows you to set breakpoints, switch
between work-items, view stack traces and inspect variables or
memory. If Oclgrind is interpreting SPIR generated by a high-level
programming model, the debugger will step through the execution
of SPIR instructions, instead of OpenCL C source code.

OpenCL Runtime API

SPIR Interpreter / OpenCL Device Simulator

OpenCL
Application
with
OpenCL C
kernels

github.com/jrprice/Oclgrind

