
Wookeun Jung, Gangwon Jo, and Jaejin Lee

Center for Manycore Programming

School of Computer Science and Engineering, Seoul National University, Seoul, 151-744, Korea

http://aces.snu.ac.kr

Brute Force Attack on Block Cipher

Introduction

This work was supported by the National Research

Foundation of Korea (NRF) grant funded by the Korea

government (MSIP) (No.2013R1A3A2003664). ICT at Seoul

National University provided research facilities for this study.

Brute Force Attack on Block Ciphers Using OpenCL

Conclusion Acknowledgement

OpenCL Implementation

Experiment

• Baseline implementation

• Port sequential brute force attack C

code to OpenCL

• Possible keys to check are evenly distributed

to work-items

• Each work-item encrypts the plaintext block

using assigned keys sequentially one by one

• If encrypted block is same as ciphertext,

notify it to the host code through global

memory

• Optimization

• Work group size selection

• For each accelerator, the best performing

work group size is selected

• Tuned by hand

• Local memory utilization

• The bottleneck is S-Box access latency

• Put S-Box on OpenCL local memory to

reduce the latency

• Gains speedup on GPUs

• Does not gain speedup on Intel Xeon Phi

• Block cipher

• Block cipher is a widely used concept in cryptography

• Used for file encryption in general

• Divide a plaintext into multiple blocks

• Encrypt the blocks using the same key

• Data Encryption Standard (DES), 1975

• Advanced Encryption Standard (AES), 2001

• Brute Force Attack on Block cihper

• The goal is to find the key used for encryption

• Exhaustive Search for the possible key

• Straightforward, but time-consuming

• Embarrassingly parallel workload

• Accelerated brute force attack using OpenCL

• Distribute possible keys to OpenCL work items

• Two target block ciphers

• DES, AES

• Three target accelerators

• AMD GPU, Nvidia GPU, Intel Xeon Phi Coprocessor

• 68.39X speedup on average to sequential version

• Comparison with other framework

• CUDA vs. OpenCL

• MPI + Vector Intrinsic vs. OpenCL

• Suggestion on OpenCL language feature

• Scatter/Gather extension

• Experimental environment • Effect of local memory utilization (AES) • Optimized OpenCL Performance

• Our OpenCL implementations achieved

• 69.39X speedup to sequential version on average

• 185.29X speedup using GPU

• 9.73X speedup using Intel Xeon Phi

• Our experimental result shows

• Importance of local memory utilization

• OpenCL support for Intel Xeon Phi need to be improved

• Explicit approach

• OpenCL built-in support for Scatter/Gather instruction

• Implicit approach

• Advanced auto-vectorization support in OpenCL Compiler

• Assumption on the attack

• A pair of plaintext / ciphertext block is assumed to be given

• The key used for the encryption is unknown

• The goal is to find the key used for the encryption

• To make the problem size be in a reasonable scale, we assume that

the subset of the input key is known

• Approach

• Encrypt the plaintext block using every possible keys and compare it

with the ciphertext block

Target Block Ciphers

• Data Encryption Standard

• Proposed in 1975

• 56bit Key, 64bit block size

• Advanced Encryption Standard

• Proposed in 2001

• Larger block & Longer key length

than DES

• Bottleneck is substitution phases

• Called S-Box access

• Random index array reference

DES AES

Key Length 56 bit 128 bit

Block Size 64 bit 128 bit

Bottleneck S-Box access

Specification of target block ciphers

//plaintext, ciphertext is given

for(i = 0; i < N; i++)

{

key = get_possible_key(i);

temp = AES(plaintext, key);

if(isEqual(temp, ciphertext))

break;

//i’th possible key is the answer

}

__kernel void key_search(

__constant unsigned char * plaintext,

__constant unsigned char * ciphertext,

__global int* result)

{

const uint gid = get_global_id(0);

const uint gsz = get_global_size(0);

const uint start = (N * gid) / gsz;

const uint end = (N * (gid + 1)) / gsz;

for(i = start; i < end; i++)

{

key = get_possible_key(i);

temp = AES(plaintext, key);

if(isEqual(temp, ciphertext))

result[gid] = i;

}

}

Sequential brute force attack code

OpenCL kernel code

Implementation in Other Programming Models
• CUDA

• For Nvidia GPU

• Implementation is very

similar to OpenCL

• Optimizations for OpenCL

can be applied to CUDA

in a similar manner

• ex) Local memory ->

Shared memory

• MPI + Vector

• For Intel Xeon Phi Coprocessor

• Distribute possible keys to MPI processes, and to SIMD lanes

• Vectorize using Intel Compiler intrinsic

• Use Scatter/Gather instruction

• Key for AES/DES vectorization

• S-Box reference is vectorized using gather instruction

• OpenCL vector type does not support Scatter/Gather

instruction

313.22

144.56

203.19

128.11

22.35
4.24

0

50

100

150

200

250

300

350

DES AES

Sp
e

ed
u

p
 t

o
 s

e
q

u
en

ti
al

 v
er

si
o

n

AMD Radeon HD 7970

Nvidia GTX TITAN

Intel Xeon Phi Coprocessor 5110P

• Effect of work group size (AES, AMD GPU)

AMD Radeon HD 7970

Nvidia GTX TITAN

0 0.5 1 1.5 2 2.5 3

Speedup from local memory utilization

0

0.5

1

1.5

OpenCL CUDA

Sp
ee

d
u

p
 t

o

O
p

en
C

L
ve

rs
io

n

• MPI + Vector vs. OpenCL

(AES, Intel Xeon Phi)

0

2

4

6

8

OpenCL MPI MPI+Vector

Sp
e

ed
u

p
 t

o
O

p
en

C
L

ve
rs

io
n

• CUDA vs. OpenCL

(AES, Nvidia GPU)

0

1

2

3

4

5

16 32 64 128 256

Sp
ee

d
u

p
 t

o

ve
rs

io
n

 w
it

h
w

o
rk

 g
ro

u
p

 s
iz

e
=

1
6

Work group size

Number of
Cores

Core Clock
Frequency

Intel CPU
(E5-2650)

8
(only 1 core is used)

2.0 GHz

AMD GPU
(HD Radeon 7970)

2048 925 MHz

Nvidia GPU
(GeForce GTX TITAN)

2880 837 MHz

Intel Xeon Phi
(Xeon Phi Coprocessor 5110P)

60 1053 MHz

