
A SYCL IMPLEMENTATION

TARGETING DEVELOPMENT, DEBUGGING,

SIMULATION AND CONFORMANCE

Peter Thoman
University of Innsbruck

Fabian Knorr
University of Innsbruck

Luigi Crisci
University of Salerno

Motivation

 Testing and debugging a SYCL program requires access to accelerator hardware

 SYCL programs are often not portable between GPU vendors

 Implementations do not typically enforce requirements of the kernel API

 Distributed-memory, asynchronous, parallel execution is difficult to debug

Goal: A developer-focused CPU-only SYCL implementation with simulation capabilities.

2

SimSYCL in the Ecosystem 3

SimSYCL’s simulation and verification capabilities helps in quick development of
correct and portable SYCL applications.

Debugger-Friendly Synchronous Execution 4

Asynchronous
SYCL DAG

SimSYCL
synchronous

execution

Few limitations:
• Kernels can’t wait for live host accessors to go out of scope
• Shared-Memory communication between user-space and kernels is forbidden

Executing ND-range kernels 5

In order for work items to meet at group-collective operations (barrier, reduce, …) while
keeping local variables intact, a sequential schedule must be able to switch between stacks.

SimSYCL uses boost.context to maintain an execution context for each item in a group.

Verification of SYCL host code

 Strict adherence to the SYCL specification and avoiding any non-standard
interfaces will identify non-conformant user code

 Runtime checking of invariants that would negatively impact performance in
typical production-grade SYCL implementations

 Full compatibility with AddressSanitizer (even in kernel code!)

6

Run-time verification in kernel code 7

sycl::queue q;
q.submit([](sycl::handler& cgh) {

cgh.parallel_for(sycl::nd_range<1>(2,2),
[=](sycl::nd_item<1> item) {

auto id = item.get_global_id(0);
if(id == 0) {

sycl::group_barrier(item.get_group());
}

});
});

SimSYCL check failed: id_equivalent
at simsycl/group_operation_impl.cc:37:5

group operation id mismatch:
group recorded operation "barrier", but work item 1 is trying to perform "exit"

Undefined Behavior:
All work-items must
converge on the
group barrier

Rigorous Concept Checking with C++20 8

SimSYCL anticipates the switch to C++20 with a concept-based SYCL interface.

template<typename T>
concept SyclFloat = std::is_same_v<T, float>

|| std::is_same_v<T, double>
|| std::is_same_v<T, sycl::half>;

template<typename T>
concept GenFloat = SyclFloat<T> || (

(Swizzle<T> || Vec<T> || MArray<T>)
&& SyclFloat<typename T::element_type>);

template<GenFloat T1, GenFloat T2>
requires(std::same_as<T1,T2> || MatchingVec<T1,T2>)
auto max(T1 x, T2 y) { ... }

Officially supported compilers are GCC 11, Clang 17, and MSVC 14.

Inversion of Device Capabilities 9

"devices": {
"SimSYCL virtual GPU": {

"device_type": "gpu",
"max_work_item_sizes<1>": [1024],
"max_work_item_sizes<2>": [1024, 1024],
"max_work_item_sizes<3>": [64, 1024, 1024],
"local_mem_size": 65536,
"global_mem_size": 8589934592,
"sub_group_sizes": [32],
...

}
}

sycl::device d;
size_t lm_size = d.get_info<

sycl::info::device::local_mem_size>();
assert(lm_size == 65536);

Specify platforms, devices and
capabilities via SimSYCL API or a
JSON system definition

Device enumeration, memory
capacities, (sub-) group sizes,
and device-info queries are
simulated accordingly

1

2

An Executable Specification

The simplified execution model allows SimSYCL to become the smallest possible
conformant implementation and qualifies it as a testing ground for new SYCL features.

There are few SYCL features that SimSYCL cannot support:

 Asynchronicity between the user’s application thread and kernels or host tasks

 Attributes like [[sycl::reqd_sub_group_size]] (require compiler support)

 Queries on kernel properties like sycl::is_compatible()

10

Improved Edit-Compile-Debug Cycle 11

SYCL-Bench Celerity

on dual AMD EPYC 7763, 1TB DDR4-3200 RAM, ninja, Clang 17.0.6, ld.mold, Ubuntu 22.04

Runtime Benchmarks – Simple Kernels 12

SYCL-CTS Conformance 13

0 8 16 24 32 40 48 56 64

DPC++

AdaptiveCpp

SimSYCL

SYCL-CTS Suites

Passed Failed to Run Failed to Compile

Revision aa0762ef

Revision 3952b468
OpenMP backend

Revision 25c3666d
OpenCL CPU backend

without full-conformance checks

14

Try it today!

https://github.com/celerity/SimSYCL

https://github.com/celerity/SimSYCL

